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This article describes the performance of the all-digital data-transition tracking

loop (DTTL) with coherent and noncoherent sampling using nonlinear theory. The
effects of few samples per symbol and of noncommensurate sampling and symbol

rates are addressed and analyzed. Their impact on the probability density and

variance of the phase error are quantified through computer simulations.

It is shown that the performance of the all-digital DTTL approaches its analog

counterpart when the sampling and symbol rates are noncommensurate (i.e., the

number of samples per symbol is an irrational number). The loop signal-to-noise

ratio (SNR) (inverse of phase error variance) degrades when the number of samples

per symbol is an odd integer but degrades even further for even integers.

I. Introduction

In modern digital communication systems, analog-to-

digital (A/D) conversion is performed as far toward the
front end as possible using available technology. Usually,

the received signal is amplified and then downconverted to

the appropriate frequency for digital conversion. There-
after, various system functions are performed digitally, in-

cluding carrier, subcarrier, and symbol synchronization, as

well as signal detection and decoding. Depending on the

application, one can either sample the baseband signals

(in-phase and quadrature) or sample the intermediate ire-

quency (IF) signal. Furthermore, the sampling clock can
be free running or controlled by the symbol synchroniza-

tion loop. In the former case, the sampling rate is non-
commensurate with the symbol rate. In the latter case,

the sampling clock can be adjusted to obtain an integer
number of samples per received symbol. All of these is-

sues affect the final architecture and design of a receiver

and influence the amount of cross-coupling among the var-

ious loops.

A receiver called the Advanced Receiver (ARX) has

been developed for Deep Space Network (DSN) applica-
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tions [1,2]. In the ARX, the signal is sampled at the

IF, and the various tracking loops are implemented dig-

itally, e.g., the '!classical" analog integrate-and-dump fil-
ters, which are typically part of the loop arms (in-phase

and quadrature), are replaced by digital accumulators.
This article investigates the performance of the all-digital

data-transition tracking loop (DTTL), used for symbol

synchronization, for any number of samples per symbol.
In the previous version of the Advanced Receiver (ARX

I) [1], the sampling was performed synchronously with the
symbol rate, and an integer number of samples per sym-
bol were available. In the current version of the Advanced

Receiver (ARX II) [2], the sampling is performed asyn-

chronously, and the sampling clock is fixed and indepen-

dent of the symbol rate. At the highest desired data rate

of 6.6 Msymbols/sec and with a fixed 20-MHz processing
rate for the ARX II, only about 3 samples per symbol can
be obtained. We are interested in the all-digital DTTL

response and performance with a small number of samples

per symbol.

Some analytical results for the phase error variance of

the analog DTTL were derived in [3], where the input is

an analog signal and symbol and midphase detection were

performed with analog integrate-and-dump filters. Later,

the analysis was extended in [4], taking into account vari-

ations of the equivalent noise spectrum with respect to

normalized phase error. In this article, we extend the pre-
vious results for the analog DTTL to the all-digital DTTL.

We first note that there are two sampling models. One is

to sample the signal instantaneously and the other is to ob-
tain the sample by integration-and-dump (I & D) sampling

of the signal. The instantaneous sampling technique can
be used when the sampling rate is significantly higher than

the symbol rate. The I & D sampling technique should
be used when the number of samples per symbol is small

[7]. In the absence of prefiltering and noise, the received

symbol pulse is a perfect square wave, and instantaneous

sampling provides voltage values of equal value. In the I
& D case, all samples also have equal value except for the
first one after a transition boundary of two symbols with

different polarity. The all-digital DTTL can operate on

either type of sample.

To illustrate the differences between analog and all-

digital DTTLs, we consider the noiseless case first. Note
that if the input is an analog signal, the midphase inte-

grator can produce a nonzero error voltage no matter how
small the phase error is. Thus, a correction voltage can

be generated at every symbol transition whenever a phase
error exists. Therefore, the analog DTTL has infinite res-

olution for phase detection.

The all-digital DTTL, in contrast, has only finite res-

olution for phase detection. This is illustrated in the fol-

lowing: Suppose that there are an even number of samples

per symbol. When a symbol transition occurs, the digi-

tal midphase accumulator will produce a nonzero voltage

only if the phase error causes sample slipping (assuming

equal amplitude samples). As long as the phase error stays

within a range of values that avoids sample slipping, the

loop always generates a zero error signal. This range of
undetectable phase errors accounts for the finite resolution

of the all-digital DTTL. The more samples per symbol we
use, the higher the resolution we can achieve and the closer

the all-digital DTTL is to its analog counterpart. A key

question is the impact of the all-digital DTTL's finite res-
olution on the S-curve and the phase error variance for few

samples per symbol (say, three or four samples).

Another issue in an all-digital implementation is the ef-

fect of a noninteger number of samples per symbol. If the

sampling clock is driven by the symbol synchronization

loop, the number of samples per symbol can be made an

exact even integer, which reduces the self-noise generated

in the midphase accumulator, as will be discussed later.

Under that sampling scenario, the sampling clock is con-

stantly adapting as the data rate changes due to Doppler
or other effects. One disadvantage of that scheme is that

no fixed time base is available in the system. On the other

hand, if the sampling clock is free running and is derived
from a fixed frequency standard, the sampling period is

fixed although the symbol rate may change. This may

result in a noninteger number of samples per symbol. A
model is derived in this article to analyze the performance

of the all-digital DTTL for any sampling and symbol rates.

In Section II, a nonlinear analysis of the loop is presented
to handle all scenarios along with simulation results. The

conclusion is presented in Section III.

II. Analysis

The performance of the all-digital data-transition track-

ing loop with coherent and noncoherent sampling is ana-
lyzed here. The block diagram of the all-digital DTTL is

shown in Fig. 1. The input r(i) to the DTTL can be ob-

tained by instantaneous sampling or by I & D sampling.
In the subsequent derivation, closed form solutions will be

obtained assuming samples of equal value, and results will

be verified by simulation assuming samples of both equal

and unequal value.

Noncoherent sampling means that the sampling clock

runs independently of the estimated symbol phase, i.e.,
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the sampling time is independent of the estimated symbol

phase. This has minimal impact if there are many sam-

ples per symbol. As the number of samples per symbol
decreases, the S-curve becomes more and more coarse, and

self-noise (to be explained later) increases. Our goal is to
quantify the effects of a small number of samples per sym-

bol on the phase error variance. A theory is presented for a

first-order DTTL using Markov chains. The approach is to
derive the S-curve and to solve the Chapman-Kolmogorov

(C-K) equation to get the density function of the phase
error. The closed-loop phase error variance and the degra-

dation of the symbol detection can be evaluated from the

phase error density function.

To illustrate the phenomenon of self-noise, we consider

a simple example shown in Fig. 2, where we have five sam-

pies per symbol. We assume no thermal noise and perfect

tracking at a particular moment. The output of the sym-
bol transition detector is not zero because it either sums

three samples from the first symbol and two samples from

the second symbol [Fig. 2(a)] or sums two samples from

the first symbol and three samples from the second sym-

bol [Fig. 2(b)]. Notice that this situation occurs for ev-
ery symbol interval as long as the loop maintains perfect

tracking. The nonzero output of the loop filter will drag

the loop away from the perfect tracking condition.

In order to quantify this phenomenon, we first intro-

duce three useful parameters. Let fl denote the number

of samples per symbol, which may not be an integer, and

c_(1) denote the offset of the first sample mark in a received
symbol from the symbol boundary. By convention, c_(k) is
normalized and is measured as a fraction of the sampling

interval. We observe that a(k) remains constant if fl is an

integer, and it varies from symbol to symbol if/3 is not an

integer. Let us number the received symbols by 1, 2, 3, ...
and denote the value of a(k) at the first symbol as a(1),
which is referred to as the initial sampling offset. The

values of o_(k) at the subsequent symbols, namely, a(2),

a(3), ..., can be computed from fl and c_(1). The number
of sample marks in a transition detection window and the
number of sample marks in a symbol detection window

are all functions of a(k). Thus, the output of the symbol
detector and that of the transition detector fluctuate from

symbol to symbol as a(k). This subject will be discussed
later in more detail.

Another important observation about the all-digital
DTTL with a low number of samples per symbol is that it

can have an irreducible phase error due to a finite number

of samples per symbol. To illustrate this phenomenon,
let us consider the example shown in Fig. 3, where ev-

ery symbol contains four samples. We can see that as

long as the estimated phase lies between tl and t2, the

error signal is always zero (or nearly zero if the received
symbol does not have a perfect square waveform or if we

have unequal amplitude samples) and the DTTL contin-

ues tracking. However, we see that there still exists unre-

solved phase ambiguity within the interval from ll to t_.

MathematicMly, this phase ambiguity can be explained by

a staircase S-curve. This phenomenon might have little

effect on symbol detection performance if we use straight
accumulation to detect the symbols. However, if we use

weighted accumulation to detect the symbols, the phase

ambiguity can introduce misweighting and thus degrade

performance [5,6].

Before we proceed to the mathematical analysis, let us
examine the all-digital DTTL block diagram again. The

error signal accumulator between the loop filter F(z) and
the multiplier performs an averaging function so that the

subsequent loop filter can operate at a slower speed. The

loop bandwidth is determined primarily by the loop filter

F(z). Thus, the presence of the accumulator is simply
for hardware convenience. In the following analysis, we

consider the DTTL without the error-signal accunmlator.

A. Mathematical Model

Assuming that the carrier and subcarrier (if any) have
been removed in an ideal fashion, the received baseband

waveform is given by

r(t) = x/'S___ akp(t -- kT) + n(t) (1)
k

where S is the signal power, T is the symbol time, n(t) is
white Gaussian noise with one-sided power spectral den-

sity No W/Hz, ak = 4-1 represents the polarity of the

kth symbol, and p(t) is the square-wave function having
a value of 1 for 0 < t < T, and having a value of 0 else-

where. The ith sample can be expressed after normalizing

by 1/v as

r(i) = ak + n(i) (2)

where we assume the sample is derived from the kth sym-

bol, n(i) is a zero-mean Gaussian random variable with

variance cr_ = No/(2STs), and Ts is the sampling inter-

val. Let the phase error _ (in cycles) be defined as

a- (3)
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where 0 is the actual received symbol phase and 0" is the

estimated symbol phase. Note that A should have a value
between -0.5 and 0.5. The error signal is affected by the

locations of samples within their respective received sym-

bols. In order to quantify this effect, we define a set of four

A t integer-valued functions. They represent the number

of sample marks contained in their respective intervals, as

illustrated in Fig. 4. The output of the in-phase accu-

mulator x(k) and the midphase accumulator y(k) can be

expressed in terms of the A_ functions, namely

Al(k)ak 4- A2(k)ak+l 4- _l(k) "4-'_'2(]¢)

for A_> 0

x(k) =
Al(k)ak + A2(k)ak-1 4- rtl(k) 4- n2(k)

for A<0

Al(k + 1)ak+l + A2(k 4- 1)ak+,, + nz(k)

4-n4(k) for A >__0

x(k + 1) =
Al(k 4- 1)ak+l + A2(k 4- 1)ak 4- n3(k)

4-n4(k) for A < 0

y(k 4- l) = A3(k)ak 4- A4(k)ak+l + n2(k) 4- n3(k) (4)

where nj (k), j --- 1,2, 3,4 are zero-mean Gaussian random
variables with variances

Var{nl (k)} =
{ (Al(k) - Aa(k))tr 2 for A >_ 0(Al(k) 4- A2(k) 4- A2(k 4- 1) - A3(k))er 2

for A<0

(_x3(k)+ _..(k))_ -_for _ ___0
Var{n2(k)}

(A3(k) - A2(k + 1))a 2 for A < 0

(±_(k) - a_(k))_ _ for A>__0
Var{n3(k)} / (A4(k) + A2(k + 1))_r 2 for A < 0

{ (A2(k) 4- AI(]¢ 4- 1) 4- A2(]¢ 4- 1)
Var{n_(k)}= -A_(k))o -_for 2,>_0

(Al(k + 1) - A4(k))O "2 for A < 0

(5)

L2/3- _(k - 1)J - L(14-A)_ - _(k - 1)J

for A>0

A_(k) =
L(24-_)fl - _(k 1)j - [fl - _(k - _)j

for A<0

L(1+ _)fl - _(k)j - LZ- .(k)j

for A>0

,%(k) =
L/3- c_(k - 1)j - [(1 + A)/3 - c_(k - 1)J

for ), < 0

W

A4(k) = [(1 +A + _-)fl - _(k)J - [/3 - e_'(k)J (6)

with w denoting the width of the transition window and

w _< 1. As previously mentioned, a(k + 1) is the sampling

offset and is computed recursively from c_(k) using

cr(k 4- 1) = Lfl - or(k) 4- 11 - (/3 - _r(k)) (7)

and Ly] denotes the greatest integer strictly less than y
(i.e., L4.2] = 4, [4] = 3). The derivation of the Ai func-
tions are similar and we illustrate only one example here,

A2(k). To derive A2(k), we use the beginning of the kth
received symbol as the reference point. The number of

samples in the kth received symbol is [/3 - c_(k)J + 1. The
number of samples from the beginning of the kth symbol to

the end of the kth estimated symbol is [(14-,\)/3-c_(k)J 4-1.

Equation (5) follows by observing that the number of sam-
ples from the end of the kth received symbol to the end

of the kth estimated symbol is A_(k). The error signal

e(k + 1) is given by

e(k 4- 1) = z(k + 1)y(k 4- 1) (8)

where z(k4-1) denotes the output of the transition detector

and sgn(x) denotes the "signum" function, i.e.,

z(k 4- 1) = sgn [x(k 4- 1)] - sgn [(k'fl_x,_, (9)
2

The conditional S-curve is defined by

and the Aj functions are computed from g(_lc_(k)) = E,,n {e(k 4- 1)l)_ , c_(k)} (10)
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where Es,, represents the conditional expectation with re-
spect to both the signal (s) and the noise (n), assuming

fixed )' and _(k). Following mathematical manipulation

similar to that in [4], we get

E,,,{e(k + 1)l)',a(k)] :

0.25[A4(k)(erf [rl(k)] - erf [r2(k)] + erf [rl(k + 1)]

+ erf [r2(k + 1)]) - A3(k)(erf [rl(k)] + err [r2(k)])

-- r3(k)(A3(k ) + A2(k))(ex p [-r12(k)] + exp [-r22(k)])

-4- r3(k)(A4(k) - A2(k))(exp [-r_(k + 1)]

-t- exp [-r_(k -t- 1)])] for )' _> 0

0.25[A4(k)(erf [rt(k + 1)] + erf [r2(k + 1)]) - Aa(k)

(err [r,(k + 1)1 - erf [r2(k + 1)]

+ erf [vl(k)] + erf [r2(k)])

- rz(k)(A3(k) - A2(k))(exp [-v_(k)] + exp [-v_(k)])

+ r3(k)(A4(k) + A2(k))(exp [-v_(k + 1)]

+ exp [-r_(k + 1)1)] for )' < 0
(11)

where

/Rs(Ax(k) - zX2(k)) 
rl(k)=V

 3(k) =

2ST
Rs-- No

 f°e-e'tt
erf (z) -- V_

We observe that g()'l_(k)) is the (unconditional) S-curve

if _(k) is a constant. If c_(k) changes from symbol to sym-
bol, its effect will be smoothed in the loop as long as the

loop time constant (inverse of loop bandwidth) is larger

than MT. M denotes the number of distinct a(k)'s and
is discussed in the subsequent section. Therefore, the S-

curve is obtained by averaging Eq. (11) over the M values

of o_(k), which is determined by the initial sampling offset
and the number of samples per symbol/3, that is,

M
1

g()')=--_-_g()'l_(k)) (13)
k=l

The S-curve g()') is a function of )', /3, and a(k). In

general,/3 can be any real number. When/3 is an irrational

number, then a(k) is nonperiodie. However, when fl is a

rational number, then a(k) becomes periodic and assumes
a finite number of possible values. For example, if fl is of

the form X.0000..., where X is any nonzero integer, then

a(k) will have only one value all the time; if/3 is of the

form X.XO00..., then a(k) will have at most 10 different
values; if/3 is of the form X.XXO00..., then a(k) will have

at most 100 different values, and so forth. For example,

consider /3 = 4.1 and suppose the initial sampling offset

_(1) = 0.7. Clearly, a(2) = 0.6, c_(3) = 0.5, a(4) = 0.4,

a(5) = 0.3, a(6) = 0.2, a(7) = 0.1, a(8) = 0, a(9) = 0.9,

a(10) = 0.8, a(ll) = 0.7 .... The more values a(k) takes,
the smoother will be the S-curve of the tracking loop.

For a large /3, r_(k + 1) = r_(k) and i = 1,2,3; for

)' > 0, A (k) --, (1 - )')/3, t,2(k) )'Z,  X3(k) (w/2
- ),)/3, A4(k) --. (w/2 + )')/3; and, as a result, r,(k) --+ (1
- 2)')v/-_,, r2(k) --* v/-R-_,, r3(k) ---, 1/_. Substituting

back in Eq. (11) and simplifying, one obtains

E,,,,{e()')}_ )'eft (V/-_(1 - 2)'))

_[wl _ 2)'] [erf (V/_--_-s)

- erf(V/_(I - 2A))] (14)

which agrees with the S-curve derived by Simon [4] for the

analog loop. For X < 0, similar steps can be taken to show

that the resulting S-curve also agrees with the analog case,

with slope at the origin given by
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w R/h2-.rn----_ erf (9/-R-_) - -_ V ---_--e )
(15)

Figure 5 depicts the theoretical and simulated S-curves as

a function of the phase error for various values of/3, namely

4, 5, 10, 4.5, and 4.74, with w = 1. Note the staircase

shape of the S-curve for all/3, with step size proportional

to 1/M/3. In this case, the phase detector is insensitive to
variations of the input phase which occur in the flat regions

of the S-curve. For small integers, the steps are large, while

for large integers, the steps are small. In general, the S-
curve is not symmetric and has a bias (i.e., g(0) _ 0)

proportional to 1/M/3, except for the case when /3 is an

exact even integer. The sign of the asymmetry depends on

a(1), which was set to 0.5 in Fig. 5(e). As/3 approaches
an irrational number, the S-curve becomes smooth due to

the averaging over a large set of values and it converges

to the S-curve encountered in analog systems. In all these

figures, the S-curve has a zero slope at the origin, which

prevents a linear analysis because it requires a nonzero

slope. Also depicted in Fig. 5(a) are two cases: when the

signal and noise (s + n) are filtered prior to the loop and

when only the signal is filtered but not the noise. The first
scenario represents the case where the main contribution

of the filtering is occurring at the receiver, while the latter
scenario is representative of filtering at the transmitter.

The filter used in the simulations is a first-order lowpass

with transfer fimction H(z) = h0/(1 + hlz-1). Note from

Fig. 5(a) that the filtering introduces a bias and a slight
asymmetry in the S-curve which is mainly due to the signal

filtering. The asymmetry in the S-curve can be reduced

by using a raised cosine or square-root raised cosine filter

[7] that results in a symmetrical pulse shape around the

data transition point. In the remaining figures, simulations
with both signal and noise filtering are shown to assess the

impact of imperfect square pulses.

One way to linearize the loop and, hence, to smooth the

shape of the S-curve is to randomly shift by an amount the

position of the window relative to the symbol transition

point. The effect of this random back and forth shifting

is to produce on the average the same amount of samples
in both halves of the symbol transition detector, so that

13 would appear to have an irrational value to the mid-

phase detector. The performance of the DTTL with such

a detector can be the topic of future work.

We will proceed to perform a nonlinear analysis of the

loop using the C K equation. However, we will need the

open-loop variance of the error signal at the input to the

loop filter to compute the transitional probability density.

The second moment of the error signal is given by

k=l

M M-1

1 M 2_= "M EE'''_{e(k''_)2}+ -1 E E,,n{e(k,,_)
k=l k=l

x e(k + 1,_)}

M M-1

A I Vl(]¢ ) + v2(k) + 16(M - 1)
8M k=l k=l

x [v3(k) + v4(k)+ vs(k)] (16)

where the variables vi(k), i = 1,2,3,4,5 are defined in
the Appendix. The open-loop variance is then computed

using

= -92(a) (17)

The open loop variance _r_(_) is depicted in Fig. 6 for
various values of/3 as a function of _. Again, note the

staircase shape of the variance which approaches a smooth

function for/3 = 4.74. The analysis agrees very well with

the simulation points for all values of/3.

B. Probability Density Function of the Phase Error

When the number of samples per symbol,/3, is low and

the decimal part of/3 has only a few nonzero digits, the

S-curve takes a coarse staircase shape, as discussed previ-

ously. In this case, the loop behaves nonlinearly, and the
phase jitter of the loop cannot be predicted from the loop's

noise-equivalent bandwidth. However, when the statistics

of the driving noise process are known, the C-K equa-
tion permits one to derive the probability density function

(pdf) of the closed-loop phase jitter even for a highly non-
linear loop. Once this pdf is found, all the moments of

the phase jitter process can be computed, and the noise

performance of the loop can be predicted.

In general, an all-digital phase-locked loop can be de-
scribed by a stochastic difference equation of the form

)_(k) = u(k) - [g(,_(k)) + n(k)]N(z)F(z) (18)

where ,_(k) is the phase error at the instant k, u(k) is

the input signal sequence, F(z) and N(z) are the dis-
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crete transfer functions of the loop filter and the numer-

ically controlled oscillator (NCO), respectively, the func-

tion g(_(k)) represents the nonlinearity of the phase de-

tector, and n(k) is the open-loop noise process. In digi-

tal phase-locked loops, this noise process consists of both

thermal and quantization noise. For the all-digital DTTL
under consideration, the noise n(k) is zero-mean with

the variance given by Eq. (17). In general, the product

F(z)Y(z) is of the form

bo + blz -1 + ... + bN z-N

F(z)N(z) = (19)
ao+al z-1 +...+aN z-N

Here in the context of the stochastic difference equations,

z -1 should be thought of as the unit delay operator. Using

Eq. (19), Eq. (18) can be rewritten as

A(k) = [aou(k) + bo(g(A(k)) + n(k))]

-]- Z -1 [allt(k ) -- alA(k) - blg(A(k)) - bin(k)]

-t- z-2[a2u(k) -- a2)_(k) -- b2g(A(k)) -- b2n(k)]

+ z-N[aNu(k) -- aN_(k) - bNg(A(k)) - bNn(k)]

(20)

Defining Zl as the row with z -1, x2 as the row with z -2,
etc., the above equation can now be expressed in terms of

the following state and output equations:

_z(k + 1) = Ax__(k) - bg(A(k)) + au(k) - bn(k)

A(k) = xl(k) + [aou(k) + bog(A(k)) + bon(k)]

(21)

where x_ is the state vector, [Xl x2 ... aN] t, A is the tran-
sition matrix

-a1 1 0 0 i]
A= -a2 0 1 0 (22)

0 0
--aN 0 0 0

a = [hi a2 "-'aN] t , and_b = [bl b2 -..bg] t (the superscript

t denotes transpose). The need to rewrite the original
stochastic difference in vector form stems from the fact

that the original equation does not represent a Markov

process while its new form is a vector Markov process.

For a vector Markov process, the C-K equation relates the

probability density function of the state vector x at time

(k + 1), pk+l(x(k + 1)), to its probability density function

at time k through the following integral:

L/+ 1) = = q _(k + 1) = =

N- dim

_pk(x(k) = v_I X_.o)dr1.', dry

(23)

where _ is the initial condition vector and q(-) is the tran-

sition probability density function.

We will now focus on solving the above equation for the

steady-state case (large k) and a periodic phase detector.
In steady state, the initial condition vector x_0 is washed

out and can be dropped from the C-K equation, Pk+l(')

Pk(') _ P('), so that the index k can be dropped Mso. With

a periodic phase detector g(.), each state variable takes
values only between 0.5 < zi _< 0.5 (i = I...N). This

requires the "folding" (or collapsing) of the transitional pdf

q[.] to the bounded region. We define this new transitional

pdf as _[-] and rewrite the C-K as follows:

/b(y = y_) = 0:5 _[y(k + 1) = yly(k)

N- dim

= w_]#(y = w)dwl.., dwN (24)

where the primed p represents the new pdf restricted to

the {-0.5, 0.5} region. Even in this simplified form of the

C-K equation, closed form solutions can be obtained only
for a few special cases. In general, the C-K equation has

to be solved numerically, and solutions for N larger than

1 can become very computationally demanding.

In order to proceed, we will restrict our attention to the
case of Y = 1 with F(z) = bl and Y(z) = z-I�1 - z -1

(ideal summer), which corresponds to a type-I loop with no
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computational delay. Rewriting Eq. (19) for this restricted

case, we get

bl z-I

F(z)N(z) - (25)
ao + al z-1

With N = 1, the variables in Eq. (20) are a0 = 1 and al =

-1 with all others being zero. Since we are not considering

any static phase error, we set the input signal uk _ 0 so

that the loop is driven by noise only. Next, we discretize
the continuous variable y into L + 1 Yi values and, thus,

approximate the Markov process by a Markov chain [8].
The larger the value of L, the better is the approximation.

The continuous pdf on both sides of the C K equation can

be replaced by discrete probabilities P(Yi) = 5p(y = y_)

where 6 = 1/L, and the transition pdf _[i,j] is replaced by

transition probability mass distribution Q[i,j] = 62_[i,j].
With this substitution, the C-K equation becomes

L
2

P(y=yi)= _ Q[y(k + l)=yily(k)=wj]P(y=wj)

(26)

where xi = i5, i = -L/2,... L/2. The above equation has

to be true for all i. Let P(.) be the (L + 1) dimensional

vector with elements P(y = Yi) and Q be the (L + 1) x

(L + 1) matrix with elements Q [i, j]; then the C-K equation
can be written in the compact form £ = QP, which can

be solved by various techniques used in systems of linear

equations [9]. For example, one can write the above matrix

equation as

[Q - I]P = 0 (27)

with I being the identity matrix and 0 the zero vector.
This matrix Q - I will have at most (L + 1) distinct eigen-

values, and the desired solution, the P vector, will be the

eigenvector corresponding to the zero eigenvalue. The last
step in solving for P is to assume a suitable transition

probability density function which will generate the ele-

ments Q[i, j] of the matrix Q. When thermal noise domi-

nates, the noise process n(k) can be assumed to be Gaus-

sian, for which

1 _ [ +/_pj)2]
Q[i,j] = 62 _ y_ exp .(xi

L J
(28)

2 2
where a_ = blcr_(A ), a_(A) is the variance given by
Eq. (17) at $ = xj, and pj = -alxj - blg(x.i).

However, the Gaussian assumption becomes less accu-

rate when the quantization noise starts to dominate over

the thermal noise (the high-SNR case). Our simulations

have shown that, at high SNRs, the pdf on the phase er-

ror process becomes highly irregular and difficult to de-
scribe mathematically. So a trapezoidal or a uniform dis-
tribution function with mean and variance as used for the

Gaussian gives results close to the ones obtained by simu-
lation. In our computations, the singular value decompo-

sition (SVD) algorithm was used, and L was set to 1100
to achieve acceptable resolution at a high SNR. The com-

puted and simulated pdfs are depicted in Fig. 7 for the

case of/3 = 4,5,10,4.5, and 4.74. When /3 = 4, the pdf

exhibits a significant flat region, as expected. However,

for/3 = 5, the flat region disappears due to the effect of

the odd nmnber of samples per symbol. The simulations
were carried out with one-sided loop bandwidth BL set to

0.01 Hz and a symbol rate of 1 symbol/sec. For/3 = 10,

the flat region is present again but is significantly reduced

compared to the case of/3 = 4. For/3 = 4.5 or 4.74, the
pdf is a smooth function, as one would expect. Note the

nonzero mean in Fig. 7(e), which is due to the asymmetric

S-curve in Fig. 5(e).

The corresponding variances for all cases are shown in

Table 1. In Table l(a), the loop SNR (inverse of tracking

variance) is higher at /3 = 5 than at /3 = 4 and 10 due

to the averaging process over the various offsets, _(k)'s.

Note that the simulations and predictions agree well in all

cases, with the largest deviation, of about 0.7 dB, obtained

with/3 = 5. Table l(b) depicts the effect of the self-noise

which is dominant at high symbol SNRs (such as 25 riB).
The model predicts the contribution of the self-noise very

accurately for integer as well as noninteger /3. This noise

is the limiting factor in the tracking performance in any

all-digital DTTL implementation and is nonexistent in an

analog design.

III. Conclusion

Nonlinear analysis of the all-digital DTTL is used to

quantify its performance as a function of the number of
samples per symbol ft. It is shown that the probability

density function of the closed-loop phase error can vary

significantly depending upon the number of samples per

symbol,/3, and the symbol SNR.

The performance of the all-digital DTTL approaches its

analog counterpart as /3 increases and the sampling and
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symbol rates are noncommensurate (i.e., fl is irrational).

The loop SNR (inverse of phase error variance) degrades
when _ is an odd integer and degrades even further when

fl is an even integer. In general, the S-curve has a bias

proportional to 1/(M/3), but for an even-integer/3 the bias

goes to zero.
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(a)

Table 1. Predicted and simulated variances: (a) white nolse

domlnated region and (b) se|f-nolse domlnated region.

Symbol Variance, Variance,

SNIR, dB simulation theory

4.0 3 0.00635 0.006324

5.0 3 0.000954 0.00114

10.0 3 0.00234 0.002434

10.0 10 0.000925 0.000972

4.5 3 0.00235 0.0026

4.74 3 0.00253 0.002720

(b)

Symbol Variance, Variance,

SNR, dB simulation theory

4.0 25 0.004448 0.004578

5.0 25 0.000028 0.000030

10.0 25 0.000910 0.000972

4.5 25 0.000021 0.000024

4.75 25 0.002633 0.002750
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Fig. 1. Block diagram of the all-digital DTTL.
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Fig. 2. The effect of an odd number of samples per symbol:

(a) three samples from the first symbol and two samples

from the second symbol and (b) two samples from the first

symbol and three samples from the second symbol.
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Definition of Variables

Appendix

v_(k), v2(k ), v3(k ), v4(k), and vs(k)

_,(k) = _[A_(_2 a,(k)]]
([_x_(k) + A_(k) + 2< j

x [4+ (eft [rl(k)] - erf M(k)])(_rf [,'x(k+ 1)]+ _rf [,'2(k+ 1)])])

-- 2Aa(k)A4(k)(erf [rl(k)] + erf [r2(k)])(erf [rl(k + 1)] + erf [r2(k + 1)])

+ (Aa(k) + A2(k))_ra(k) ((eft [rl(k + 1)] + erf [r2(k + 1)])

(<xx(k) - _(k) ))× &(k) 7A_(k) _xp [-_,'(k + 1)]+ _xp [-_,'(k + 1)]

- (A4(k) - A2(k))2rz(k + 1)((eft [el(k)] - erf [r2(k)])

Ax(k + 1) - A2(k + 1)%× )x Al(k+l)+A2(k+_( p [-v_(k+l)]+exp[-r_(k+l)]) forA>0
(A-l)

ul(k) = ([ m2(k) + m2(k)-]- fl[m3(k)'q- A4(k)]]_/_s

x [4 + (eft [rl(k)] -- erf [r2(k)])(erf [rl(k + 1)] + erf [r2(k + 1)])])

- 2Az(k)A4(k)(erf [rl(k)] + err [r2(k)])(erf [rx(k + 1)] + erf [r2(k + 1)])

+ (Aa(k) - A2(k))2ra(k) ((eft [r,(k + 1)] + erf [r2(k + 1)])

× Al(k) 7 A2(k ) exp [-r_(k+ I)1+exp [-r_(k + l)l

-- (A4(k) + A2(k))2ra(k + 1) ((eft [r,(k)] - err [r2(k)])

(A'(k+l)-A2(k+x) ))x \Al(k+ 1)TA2(k+ 1) exp [-r_(k+ 1)] +exp [-r_(k + 1)] for A < 0
(A-2)
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v2(k) = 2A3(k)(r3(k)[A3(k) + A2(k)](erf [rl(k + 1)] + erf [r2(k + 1)])

x (exp [-r_(k + 1)] - exp [-rg(k + 1)]) - vs(k + X)[A4(k) - A2(k)]

x (erf [rl(k)] @ err [g2(]¢)])(ex p [-r_(k ÷ 1)] + exp [-r_(k + 1)]))

+ 2A4(k)(-r3(k)[A3(k ) + A2(k)](erf [rl(k + 1)] + erf [rz(k + 1)])

× (exp [-r_(k + 1)] + exp [-r_(k + 1)]) + r3(k + 1)[A4(k) - A2(k)]

x (erf [rl(k)] - err [r2(k)])(exp [-r_(k + 1)] + exp [-r_(k + 1)])) for X > 0 (A-3)

v2(k) = 2A3(k)(r3(k)[A3(k) + A2(k)](erf [Fl(k ÷ 1)] - erf [r2(k + 1)])

x (exp [-r_(k + 1)] + exp [-r_(k + 1)]) - r3(k + 1)[A4(k) - A2(k)]

x (erf [rl(k)] ÷ err [r2(k)])(exp [-r_(k + 1)] + exp [-rg(k + 1)]))

+ 2A4(k)(-r3(k)[A3(k) + A2(k)](erf [rl(k + 1)] + erf [r2(k + 1)]).

x (exp [-r_(k -4-1)] -4-exp [-rg(k -4- 1)]) -4-r3(k -4-1)[A4(k) - A2(k)]

× (eft [rl(k)] -4-erf [r2(k)])(exp [-r_(k -4-1)] - exp [-r_(k -4-1)])) for X < 0 (A-4)

vz(k) = A3(k)A3(k-4-1)[(erf [rl(k)] -4-erf [r2(k)])(erf [lel(k-4-1)]-4-erf [r2(k-4-1)])]

- (A3(k)A4(k + 1)(err [rl(k)] -4-err [r2(k)])((erf [rl(k + 1)] - err [r2(k+ 1)])

•4-(err [r_(k+ 2)]+ erf [r2(k+ 2)])))

- _X3(k+ 1)±4(k)(4 + [(erf [,l(k)] - erf [r_(k)])(erf [_(k + 1)]

+ err [_2(k+ 1)])]+ (erf [r_(k+ 1)]- err [r2(k+ 1)])

x (err [rl(k + 2)]+ erf [r2(k+ 2)]))

+ A4(k)A4(k+ 1)((err [_l(k)] - erf [r2(k)])((erf [,'l(k + 1)]- erf [,'2(k+ 1)])

+ (erf [rl(k + 2)]+ erf [r2(k+ 2)])) + (erf [rx(k+ 1)]+ erf [r2(k+ 1)])

× (erf [rl(k -4-2)] -4-erf [v2(k+ 2)])) for_ > 0 (A-5)
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va(k) = A4(k)A4(k+ 1)[(erf [rl(k --]-1)]q-err [r2(k-4-1)])

x (err [rl(k + 2)]+ err [r=(k+ 2)])]

- (Aa(k)A4(k + 1)(erf [rl(k + 2)]+ erf [r2(k+ 2)])((erf [rl(k)] + erf [r_(k)])

+ (eft [rl(k + 1)] - err [r2(k+ 1)])))

- Aa(k + 1)A4(k)(4+ [(err [rl(k)] + erf [r2(k)])(erf [rl(k + 1)]

- err [r2(k+ 1)])]+ (eft [rl(k + 2)] - erf [r2(k+ 2)])

X (err [rl(k -]-1)]+ err [r,(k -t-1)]))

+ A3(k)Az(k + 1)((erf [r_(k)]+ erf [r2(k)])((erf [r_(k+ 2)] - erf [r2(k+ 2)])

+ (erf [rx(k+ 1)]+ erf [r2(k+ 1)]))+ (erf [rl(k + 1)]- erf [r2(k+ 1)])

x (err [rx(k+ 2)] - erf [r2(k+ 2)])) for _ < 0 (A-6)

v4(k) = (r3(k)[A3(k) + A2(k)]r3(k + 1)[A3(k + 1) + A2(k + 1)](exp [-r2(k + 1)1

+ exp [-rg(k + 1)])(exp [-r2(k + 1)] + exp [-r_(k + 1)]))

+ (A3(k)[A4(k) - A2(k)]r3(k + 1)[A4(k + 1) - A2(k + 1)]

x (exp [-r12(k + 1)] + exo [-r22(k + 1)])(exp [-r12(k + 2)] + exp [-r22(k + 2)]))

- (rz(k)[A3(k) + A2(k)]r3(k + 1)[Aa(k + 1) - A_(k + 1)](exp [-r12(k + 1)]

+ exp [-r_(k + 1)])(exp [-r_(k + 2)] + exp [-r_(k + 2)]))

[_(k)])/_(zx4(k) - _(k)),
- (eft [rl(k)] -- erf V _rR:

× (A4(k)- _ -_ _3_ _= _2(k + 1)) 1"5 exp + - +

[A3(k + 1) + A2(k + 1)]][A3(k ) + As(k)] [1 + [A4(k) - A2(k)]

+ 1)+ + 1)) [-/Al k+ 1)++ (A4(k) -- _ _ _3(-k _'_) -- _-'22(k + 1)) 1"5 exp +
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x

[A3(k)-4-A2(k)] [1+ [A3(_? 4- 1)-_- A2(_+ 1)]][a4(k) - a2(k)]
_ ; ]))[_4(k) A2(k)]

2)])./#(_x,(k) - A2(k)p
+ (eft [rl(k + 2)]+ erf [r2(k+ V ;r-R;

( ( (A_(k+l)-A2(k+l)) [-(Al(k4- -I- -_x - (A4(k) - A2(k) ¥A-3_-+ _) Z A-_-2(k+ 1)) ls exp 1) - A2(k 1)) 2

X

rl 4- [A3(k + 1)+ A2(k + 1)]][/,3(k)+ A2(k)] [ J
-[A4(_.) ! z_(k)] l])

(tl(k + 1)4- A2(k + 1)) [-(_1(k4- (A4(k) - _--_ ; _-3(-kT 5-_2(k + 1))15 exp L + 1) + A2(k + 1)) 2

1 ' 11))
x [A3(k 4- 1)+ A2(k + 1)]] - [A4(k) - A2(k)][A3(k) 4- A2(/e)] [1 4- [A4(k) - A2(k)]

(A-7)

vs(k) = ra(k) [Aa(k) 4- A2(k)](cxp [-r_(/c 4- l)] -I- cxp [-r_(k 4- 1)])(Aa(k 4- 1)(err [,'l(k + 1)] + err [,'2(k + 1)])
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- A4(k + 1)[(err [/-l(k 4-1)]-- erf [r2(k+ 1)])4-(eft [1"1(_'qL2)]4-erf [,'2(k+ 2)])]) + A3(k+ 1)

x [A3(k 4-1)4-A2(k4-1)](A3(k)(erf[rl(k)] + crf [r2(k)])(exp[-rl2(k 4- l)] 4-exp[-,'_(k + 1)])

- A4(/_-)[(err[rt(k + 2)]4-erf [r2(k-I-2)])(exp[-r_(k 4-1)]- exp[-r_(/," 4-1)])

4-(erf [rt(k)] - err [r2(k)])(exp[-r2(k 4-1)]4-exp[-r_(/c4-1)])1)

+ ,'3(/0[A4(k)- A2(k)](A4(k+ t)[(orr [,'l(k')] - off [,._(k)])

x (exp [-,'_(k 4- 1)]- exp [-r22(k4- 1)1)4-(_rr [,.,(k+ 2)]+ err [r,,(k4-2)])

x (exp [-r_(k 4-1)]4-exp[-r_.(k 4-1)1)]- Aa(k -I-1)[(erf [r,(k 4-2)]4-,_,.r[,._(_,+ 2)])

x (exp [-r_(k + 1)]- exp[-r_(k + 1)])+ (err [r_(k)]-,;rf [,-.,(/,')])

x (exp [-rl2(k 4-1)]4-exp [-r_(k 4-1)])])

4-r3(k + 1)[A4(k+ 1)- A2(k 4-1)](exp [-r2(k 4-2)]4-exp [-r2(k 4-2)1)

x (A4(k)[(erf [vt(k)] - erf [r2(k)])4-(eft [Pl(]¢4- 1)]4-err [,'2(k4- 1)])]

- Aa(k)(erf [r,(k)] -t-erf [r2(k)])) (A-S)


